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1. INTRODUCTION

In this paper we review some basic facts on strong uniqueness (strong
unicity) in real and complex Chebyshev approximation and draw a number
of simple conclusions. For example, we note the relation to the local
Kolmogorov criterion [4], and the connection between the linear and the
Frechet-dift'erentiable nonlinear case [1,5,20]. However, we stress the
difference between real and complex Chebyshev approximation. By counter
examples we show that a best approximation in a complex Haar subspace
need not be strongly unique (contrary to a related theorem of Dunham [11)),
that a critical point of a complex rational approximation problem need not
be a local best approximation (contrary toa theorem by Ellacott and Williams
[12]), and that Klotz [13] sufficient condition for strong uniqueness in
complex polynomial approximation is incorrect. In contrast to the real case
there are particular situations in complex approximation, where non-strong
uniqueness is the normal case (cf. Theorem 1). Moreover, with respect to
strong uniqueness, approximation problems with Hilbert space valued
functions behave like complex problems too.

In the last section we investigate the length ofprimitive extremal signatures.
If the best approximation is not strongly unique, this length is at most n in the
real case and at most 2n in the complex case (as partly conjectured by Dunham
in a private communication), and these bounds are the best possible. Finally,
we improve a related theorem of Bartelt [2] and show that his bounds are also
the best possible.

The possible lack of strong uniqueness has an impact on numerical computa
tions. Finding a strong unique local best approximation is a well-conditioned
problem. In a distinct case there holds even a uniform Lipschitz condition
for the dependence of best approximations from f [3]. Many results on
numerical algorithms are mainly based on strong uniqueness, e.g., the
quadratic convergence of Newton's method [8], and, reportedly [2], the
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convergence of the Remes algorithm. Yet, an algorithm for complex
Chebyshev approximation must be able to approach non-strongly unique
best approximations. Also, if a local best approximation is not strongly
unique, it becomes impossible to distinguish it by virtue of the local
Kolmogorov criterion from a saddle point. Moreover, there are general
results on nonlinear families which first of all depend on strong uniqueness
[5, 20].

2. LINEAR ApPROXIMATION

Suppose Z is a compact space, K stands for either IR or C, and C(Z) :=
C(Z, K) denotes the Banach space of continuous functions I: Z --+ K, en
dowed with the uniform norm. We assume at first that VC C(Z) is an
n-dimensional (linear) subspace. A given function IE C(Z) is to be approxi
mated by elements from V. Then, a best approximation (BA) v E V is called
strongly unique iff there is a y > 0 (depending on j) such that

III - w II ~ III - v II + y II v - w II for Vw E V. (1)

Note that (1) holds with y = 1 whenever v = IE V. Hence, we will assume
I rt V in the sequel.

Newman and Shapiro [17, Theorem 4] derived a fundamental result on
strong uniqueness: II V is a real Haar subspace, the best approximation is
strongly unique. In this respect real Chebyshev approximation is completely
different from linear approximation in the mean (or in any other smooth
space), where the BA is never strongly unique [20]. For the BA v in a complex
Haar subspace V, Newman and Shapiro [17, Theorem 4'] established the
existence of positive constants f31 , f32 (depending on j) such that

!I w - v II ~ f31{111 - w II - III - v IIP/2 + f32{111 - w Ii - III - v II}
for Vw E V, (2)

from which we get for every w in a neighborhood of v

III - w II ~ III - v Ii + f311 w - v 11
2 (3)

(with f3 > 0). However, they did not give a counterexample showing that (1)
does not hold for any y > o.

On the other hand, Dunham's Theorem 1 in [11] would imply strong
uniqueness in the complex case. When applied to the linear case this theorem
states: If V is a complex Haar subspace, v E Vis a BA toI rt V if and only if

fL(v, w) : = max Re{[f(z) - v(z)] w(z)} > 0
zeE(v)

for 'v'w E V\{O}, (4)
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where E(v) denotes the set of extremal points of I-v. In contrast to
Kolmogorov's criterion the equality sign has been excluded in (4). IfS denotes
the unit sphere in C(Z), (4) is equivalent to

y(V) := -IIr I-II min /-l-(v, w) > 0,
o - V WESnv

(5)

while (1) is equivalent to y ~ y(v) [4, Theorem 5]. Thus, the following three
statements hold:

(SI) y(v)? °= v is a BA.

(S2) y(v) > °= v is the strongly unique BA.

(S3) If V is a real Haar subspace, then

y(V) > °= y(v) ? 0.

The equivalence in (S3) is characteristic for real Haar subspaces [15].
Now we present a counterexample to strong uniqueness in complex Haar

subspaces. It implies that Theorem I in [11] is incorrect, and that Theorem 4
in [2] no longer holds in the complex case.

EXAMPLE 1. Let Z:={-I,I},f(z):=z,vb(z):o=b (bEC), V:={Vb:
bE q, and thus n := 1. Obviously the BA is vo , i.e., b = 0, with /11
Vo II = I, E(vo) = Z. But for every purely imaginary b we get /-l-(vo , Vb) = 0.
Thus y(vo) = 0, and Vo is not strongly unique. In fact, we get for b ~°on
the imaginary axis

3. NONLINEAR ApPROXIMATION

Now let V be a nonlinear family of functions. A local best approximation
(LBA) v E V is called strongly unique iff there is a neighborhood U C V of v
such that v is the strongly unique best approximation in U [20].

For simplicity let us assume that Be Kn is open, and p : bE B f--+ Vb E

V C C(Z) is a continuously Frechet-differentiable mapping. Let Tb : =
{p~d E C(Z) : dE Kn} denote the tangent space to V at Vb' and dim Tb its
dimension. Then we may define y(Vb) again by (5) if we replace Vby Tbthere.
We may also assume that the restriction of p to {b E B : dim T b = n} is
one-to-one.

Supposing K = IR. and dim Tb = n Wulbert [20] has shown: Vb is a strongly
unique LBA to I iflO is the strongly unique BA to1- vblrom Tb. Generally, Vb
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is called a critical point iff0 is a BA to f - Vb from Tb. Since Wulbert's result
remains correct in the complex case, we have instead of (SI) through (S3):

(S I') y(Vb) ?' 0 ¢> Vb is a critical point.

(S2') If dim Tb = n, then

y(Vb) > 0 ¢> Vb is a strongly unique LBA.

(S3') If Tb is an n-dimensional real Haar subspace, then

For real functions (S3') has essentially been proved by Barrar and Loeb
[1, Theorem 3]. Another proof is due to Dunham [10, Theorem 1]. (S2') and
(S3') have been generalized by Braess [5] and Cromme [9] to include the
important cases of manifolds with boundary (e.g., exponential sums) and
restricted range approximation, respectively. The local Kolmogorov criterion
[16, Theorem 8] is only a necessary condition for aLBA:

(S4') y(vb)?, 0 -¢: Vb is LBA.

Meinardus and Schwedt [16], Brosowski [7], and many other authors have
specified nonlinear families of approximants every critical point of which is
a BA; see the references in [6]. In particular, real rational functions defined
on an interval are such a family, but complex rationals are not.

For complex rational functions Ellacott and Williams [12, Theorems 2.1
and 2.2] state that Vb is a LBA if and only if y(vb) ?' 0, but their proof is not
complete in the case y(vb) = O. In fact, even under the additional assumption
dim Tb = n, their statement is incorrect as the following counterexample
shows:

EXAMPLE 2. Let Z:= {-I, 1, 2},f(z):= Ijz + e(z), e(-I):= e(2):=
4, e(l) := -4,

V := R~ := Ib
l
~o b

2
z : bi E C, bl + b2z 01= 01·

In a neighborhood of voo(z) := liz every function in Vis of the form Vab(Z) :=
(l + a)j(z + b), with a, bEe. We get E(voo) = Z, and for a, b -4- 0

Vab(Z) - voo(z) = b~ - ~ - a~ + b: + O(ab2) + O(bS).
z z z

Hence, the tangent space at Voo is

Too = {Wab(Z): a, b E C},
a b

Wab(Z):= - - 2'z z
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It is easy to verify that p.(voo , Wab) ~ 0 for every Wab E Too, and p.(voo , Wab) =
oiff Re a = Re b = O. Thus Voo is a critical point. If a and b were restricted to
real values, Voo would be a LBA. It is even the BA among those functions in V
having a pole in (-1, 1) and real coefficients because this family is regular
(on Z) [7, p. 91]; but it is not the BA among all real functions in V since,
e.g., v(z) = 0.75 is a better one. However, here a and b may be complex, and
if we choose a = 2Si, b = 3Si, straightforward calculations yield

as S ~O.

This proves that Voo is not a LBA but a saddle point.
More generally, let Rfm denote the family of complex rational functions

with nominator degree (at most) I (~O) and denominator degree (at most)
m (~O), and let Rfm be the subset of functions having real coefficients. Then
we get

THEOREM 1. Let Z C 1R,fE C(Z), with f real valued. Then no Vb E Rfm
(l, m ~ 0) is a strongly unique LEA to f with respect to Rfm .

Proof Assume Vb is a LBA with respect to Rfm' Then the local
Kolmogorov criterion P.(Vb' p~d) ~ 0 is satisfied for every dE iCn (n :=
1+ m + 1), andp.(vb ,Pb'd) = 0 for any d = (d1 , ... , dnY with Re dk = 0 and
arbitrary 1m dk (k = 1,... , n). Thus Y(Vb) = 0, and Vb is not a strongly unique
LBA. 0

So, critical points that are not strongly unique LBA's are very common in
complex polynomial and complex rational approximation problems. Saff
and Varga [19] have shown that even in the case where Z is an interval and
the function Vb in Theorem 1 is thus the BA from Rfm this function Vb may
not be the BA from Rfm . Then the BA from Rfm is obviously not unique. One
must expect that in this case Vb is usually a saddle point.

The computation of Y(Vb) is rather complicated if Z is an infinite set. But
assuming dim Tb = n we may use in Tb a different norm, for which the unit
sphere instead of S n Tb is

We get a function f(Vb) that is equivalent to Y(Vb) in the sense that sign Y(Vb) =
sign Y(Vb)' It is easily verified that f(Vb) is the maximum value of the object
function of a linear optimization problem containing only a finite number of
restrictions if E(Vb) is a finite set. Hence, f(Vb) is easy to compute in this case.
In the case dim Tb < n we always get f(Vb) ~ 0, however.
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4. THE LENGTH OF PRIMI1IVE EXTREMAL SIGNATURES
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Owing to the connections mentioned in Section 3 we may restrict the
discussion to the linear case again. We assume that V is a (real or complex)
subspace of C(Z) and v E V is a BA to f¢ V. We define a primitive extremal
point set to be any subset A C E(v) with the property that v is a BA to f on A
but no more a BA to f on any proper subset of A. The corresponding set
{(z, [fez) - v(z)]/Ilf - v II : z E A} C Z X C is called the primitive extremal
signature [7, 18]. The length IA Iof A is the number of elements of A. As is
well known [18], IA I ~ n + 1 in the real case, and IA I ~ 2n + 1 in the
complex case. Moreover, I A I ;;:: n + 1 if V is a Haar subspace. Dunham has
conjectured that I A I < 2n + 1 if v is not strongly unique and K = C. In
fact, even without requiring Haar's condition, we get

THEOREM 2. Ifv E V is a BA but not a strongly unique one, then the length
of a primitive extremal point set A is at most 2n if K = C and at most n if
K=R

As we have seen above, I A I = n + 1 if V is a real Haar subspace; the
theorem thus implies statement (S3).

Proof Since v is a BA but not a strongly unique BA to f on Z, so it is on
A. Indeed, for YA(V) [defined by (5) and (4) if E(v) is replaced by A there] we
conclude: YA(V) ;;:: 0 since A is primitive, and YA(V) ~ Y = 0 since A C E(v)
and v is not strongly unique; hence YA(V) = O. Now, let {c/>1 ,... , c/>n} be a
basis of V, and define h : A -- Kn by

h(z) := [fez) - v(z)](c/>1(Z), ... , c/>n(z))T, z EA. (6)

Because v is a BA, the origin of Kn is in the convex hull C of these I A I
vectors h(z), z E A [17, Theorem 1]; but since v is not strongly unique,
oE BC [4, Theorem 6]. In fact, if w = L dkc/>k * 0 satisfies 0 = YA(V) =
iLA(V, w) [defined by (4) with E(v) replaced by A], and if d:= (d1 ,... , dn)T,
then

o = iLA(V, w) = max Re{[f(z) - v(z)] w(z)} = max Re(h(z), d), (7)
zeA zeA

where (.,.) denotes the inner product in Kn. Thus, if we identify C with 1R2,

H:= {c E Kn : Re(c, d) = O}

is in 1R2n (or IRn if K = IR) a supporting hyperplane of C at the origin.
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According to Caratheodory's theorem °E Kn is a convex combination of
m ~ 2n + 1 (or n + 1 if K = IR) vectors h(z), say

m°= L Cijh(zj),
j=l

m

where Zi E A, Cii > 0, L Cii = 1.
j~l

(8)

Here, h(Zi) E H for every j, because z! ¢ H would imply

L Cij Re(h(zj), d) = -Ci! Re(h(z!), d) > 0,
#!

which requires Re (h(zj), d) > °for at least one Zj , in contrast to (7). Finally,
we note that H has the real dimension 2n - 1 (or n - 1 if K = IR) and thus
Caratheodory's theorem implies that we only need m ~ 2n (if K = iC) or
m ~ n (if K = IR) points Zj in (8) and hence in A. Since a simplex of maximum
dimension in H has 2n (or n, respectively) corners, the bounds 2n and n are
the best possible. 0

Conversely, if v E V is a strongly unique BA, we may consider subsets
A' C E(v) with the property that v is the strongly unique BA on A' but not on
any proper subset of A'. One might call such a set A' a primitive strongly
extremal point set. (However, note that "strongly extremal" has not the same
meaning here as "strong extremal" in [17].) Since °lies then in the interior
of the convex hull C' of the vectors h(z), zEA', defined by (6), we need
I A' I ?' 2n + 1 (or n + 1 if K = IR) [4, Remark 2]. This statement is in
contrast to Klotz' Lemma 3.1 [13, p. 19] and Theorem 3.2 [13, p. 21], where
a special extremal signature of length 2n - 1 is claimed to imply strong
uniqueness in R~_1.0' Our next example, which is a generalization of
Example 1, shows that Klotz' assertion is indeed wrong. Moreover, it
manifests that non-strong uniqueness exists in complex Haar subspaces of
arbitrary finite dimension n, and that even there the bound 2n in Theorem 2
is attained.

EXAMPLE 3. Let Z be the unit circle,

Z' := {Zk := exp(iTrkjn): k = 1,... , 2n},

f(z) := tzn + tz3n (z E Z),

n-1

vb(z) : = L bn_kZk
k~O

and V: = {Vb: bEen} as usual. We assert that Vo is again the unique BA,
but is not strongly unique. First, f(Zk) - VO(Zk) = f(Zk) = (_l)k, k = 1,... ,
2n. Thus IIf - Vo II = 1 and E(vo) = Z'. The optimality of Vo follows from
another theorem by Klotz [13, Theorem 2.2] or from its generalization [13,
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Theorem 9.2; 14, Theorem 3], but we will give here a much shorter proof,
which can be modified easily to prove Klotz theorem, too. Suppose Va is a
better approximation than Vo • Then, according to Kolmogorov's theorem

It follows that

k = 1,... , 2n. (9)

n-l

Re vieit
) = L: (Re dn - k cos kt - 1m dn - k sin kt) (10)

k-O

is a trigonometric polynomial of degree n - 1 that has at least 2n zeros in
(0,217]. Thus it must be the zero function, i.e.,

Re dn = 0, d1 = ... = dn - 1 = O. (11)

But this contradicts (9); hence Vo is the (unique) BA. However, Vo is not
strongly unique: If we choose d satisfying (11) and with arbitrary 1m dn ,

then (-I)k Re ViZk) = 0 for every k; and hence TJ(va , va) = y(vo) = O.
Finally note that if we delete any point of Z', say Zl , we can choose d such

that (10) has a zero in each interval (k17!n, (k + 1) 17!n), k = 2'00" 2n - 1, and
is positive in Zl • Then (9) holds for every k =1= 1, which means that Vo is not
the BA on Z'\{Zl}' We conclude that Z' is a primitive extremal point set.

The following theorem is a slightly improved version of Theorem 2 of
Bartelt [2],

THEOREM 3. Let v E V be a strongly unique BA. Then the length of a
primitive strongly extremal point set A' is at most 4n if K = C and at most 2n
ifK=1kt

Proof According to Bartelt's proof [2] any set A C E(v) on which v is a
strongly unique BA contains a subset A' consisting of at most 4n (or 2n,
respectively) points such that

and

oE int C' = int conv{h(z) : Z E A'} (12)

t-tAv, w) := max Re{[f(z) - v(z)] w(z)} > 0 for 'v'w E V, W * 0 on A'.
ZEA'

Now, assume W = 0 on A' but w * 0 on V. Then, using the same notation as
in the proof of Theorem 2, we get w = L dkcPk (with d =1= 0) and

o = Re{[f(z) - v(z)] w(z)} = Re(h(z), d) for 'v'z E A'.
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Hence h(z) E H for Vz E A', which implies int C' C int H = 0 and thus
contradicts (12). Therefore, f'A'(V, w) > °for Vw E V\{O}, Le., v is the strongly
unique BA on A'. D

Bartelt [2] also posed the question: Is 4n(2n) the best possible upper bound
in Theorem 3? Our next example proves that this is in fact true.

EXAMPLE 4. Let K = IR, Z:= {-n, ... , -I, I, ... , n},

c/>k(Z) := sign(z) 8k • 1z I (z E Z, k = I,... , n) (13)

(here 8ki denotes Kronecker's symbol), V: = {c/>l ,... , c/>..}. Obviously, the BA
to f = I is v == 0, and E(v) = Z, I Z I = 2n. We assert that Z is even a
primitive strongly extremal point set. In fact, for j = 1,... , n the vector h(j) is
the jth standard basis vector in IR", and h(-j) = -h(j). So, (12) is satisfied
for A' = Z, but not for any proper subset of Z.

In the case K = C we let Z := {-n, ... , -1; 1,... , n; -in,... , -i, i, ... , in},
f:- 1, define c/>k again by (13), and take advantage of the equivalence of C
and 1R2• Then the set {h(z) : z E Z} consists of all standard basis vectors of
1R2.. and, in addition, of the corresponding negative vectors. So, the situation
is the same as in the real case, but n is replaced by 2n.

Note added in proof Independently, Williams [21] has also constructed an example
of a (non-normal) real rational function that is a saddle point of a complex approximation
problem. Recently, important related results were established by Wulbert [22].

ACKNOWLEDGMENTS

The author is indebted to Professor D. Braess for his assistance in revising the manuscript.

REFERENCES

1. R. B. BARRAR AND H. L. LOEB, On the continuity of the nonlinear Tschebyscheff
operator, Pacific J. Math. 32 (1970), 593-601.

2. M. W. BARTELT, Strongly unique best approximates to a function on a set, and a
finite subset thereof, Pacific J. Math. 53 (1974), 1-9.

3. M. W. BARTELT, On Lipschitz conditions, strong unicity, and a theorem of A. K. Cline,
J. Approximation Theory 14 (1975), 245-250.

4. M. W. BARTELT AND H. W. McLAUGHLIN, Characterization of strong unicity in ap
proximation theory, J. Approximation Theory 9 (1973), 255-266.

5. D. BRAESS, Kritische Punkte bei der nichtlinearen Tschebyscheff-Approximation,
Math. Z. 132 (1973), 327-341.

6. D. BRAESS, Geometrical characterization for nonlinear uniform approximations, J.
Approximation Theory 11 (1974), 260-274.



NON-STRONG UNIQUENESS 213

7. B. BROSOWSKl, "Nicht-lineare Tschebyscheff-Approximation," Bibliographisches
Institut, Mannheim, 1968.

8. L. CROMME, Eine Klasse von Verfahren zur Ermittlung hester nichtlinearer
Tschebyscheff-Approximationen, Numer. Math. 2S (1976), 447-459.

9. L. CROMME, Zur Tschebyscheff-Approximation bei Ungleichungsnebenbedingungen
im Funktionenraum, in "Approximation Theory," Bonn 1976 (R. Schaback and K.
Scherer, Eds.), pp. 144-153, Springer, Berlin, 1976.

10. C. B. DUNHAM, Chebyshev approximation with the local Haar condition, SIAM J.
Numer. Anal. 8 (1971), 749-753.

II. C. B. DUNHAM, Complex Chebyshev approximation with the local Haar condition,
J. Approximation Theory 15 (1975), 267-274.

12. S. ELLACOTT AND J. WILLIAMS, Rational Chebyshev approximation in the complex
plane, SIAM J. Numer. Anal. 13 (1976), 310-323.

13. V. KLOTZ, "Polynomiale und rationale Tschebyscheff-Approximation in der komplexen
Ebene," Dissertation, Universitat Eriangen-Niirnberg, 1974.

14. V. KLOTZ, Gewisse rationale Tschebyscheff-Approximationen in der komplexen
Ebene, J. Approximation Theory 19 (1977), 51-60.

15. 15. H. W. McLAUGHLIN AND K. B. SOMERS, Another characterization of Haar sub
spaces, J. Approximation Theory 14 (1975), 93-102.

16. G. MEINARDUS AND D. SCHWEDT, Nicht-lineare Approximationen, Arch. Rational
Mech. Anal. 17 (1964), 297-326.

17. D. J. NEWMAN AND H. S. SHAPIRO, Some theorems on Cebysev approximation, Duke
Math. J. 30 (1963), 673-681.

18. T. J. RIVLIN AND H. S. SHAPIRO, A unified approach to certain problems of approxima
tion and minimization, J. SIAM 9 (1961), 670-699.

19. E. B. SAFF AND R. S. VARGA, Nonuniqueness of best approximating complex rational
functions, Bull. Amer. Math. Soc. 83 (1977), 375-377.

20. D. E. WULBERT, Uniqueness and differential characterization of approximations from
manifolds of functions, Amer. J. Math. 93 (1971), 350-366.

21. J. WILLIAMS, Characterization and computation of rational Chebyshev approxima
tions in the complex plane, to appear.

22. D. E. WULBERT, The characterization of complex rational approximations, to appear.


